
Dejan Sarka Herbert Albert Dino Esposito

&

Kompas Xnet – Pot do vašega znanja.

Posebna e-izdaja
Marec 2011

Letnik XIV

ISSN: 1408-7863

Kompas Xnet d.o.o.
Stegne 7, 1000 Ljubljana

01 5136 990
info@kompas-xnet.si

http://www.kompas-xnet.si

Using Multicolumn
Statistics to get
better Query Plans (stran 11)

Strategy and Implementation - A Powerful
Duo to Optimize Ajax Applications (stran 14)

Vsi programski jeziki
SQL serverja (stran 3)

Microsoft SQL Server: Evolution from
SQL Server 7.0 to SQL Server 2008 R2 (stran 17)

2

V Kompas Xnet-u že od ustanovitve dalje posve-
čamo izjemno skrb kvaliteti svojih storitev. Da bi
lahko vam, našim cenjenim strankam, zagotovili
najboljše storitve in rešitve, v svoji ekipi zdru-
žujemo le vrhunske strokovnjake za posamezna
področja.

Pred vami je posebna izdaja PiKE, s katero
želimo izpostaviti zelo pomemben dogodek v
našem podjetju:

Dejan SARKA, Dino ESPOSITO, Herbert ALBERT
in ostali vrhunski predavatelji iz Solid Quality
Mentors, so se pridružili naši ekipi.

Dokaz več, da smo ta hip zanesljivo najboljši
izobraževalni center v Sloveniji. In vi si zares
zaslužite najboljše.

Za to priložnost so se Dejan, Dino in Herbert
posebej potrudili in napisali zanimive članke, ki
jih boste zagotovo z navdušenjem prebrali. Spo-
znali boste, kako lahko preprosto razložiš tudi
zelo zahtevne vsebine. To pa znajo le največji
mojstri! Tudi v prihodnje bodo kolegi iz SolidQ
prispevali svoje članke in z njimi obogatili redne
in izredne izdaje naše in vaše PiKE.

Mimogrede: veste, da PiKA izhaja že 14. leto.
Izdajamo jo 5x letno, v nakladi preko 6200
izvodov in ima skoraj 6000 rednih naročnikov.

Na naslednjih straneh boste našli še pregled
aktualnih seminarjev, ki jih bodo izvajali ti vr-
hunski predavatelji.

Vabimo vas, da se čim prej prijavite in si zagoto-
vite prosto mesto. Prisrčno vabljeni!

Mi izjemno cenimo vaš čas, ki ga boste investirali
v svoje znanje, zato pri nas ne boste razočarani.

Solid Quality Mentors (SolidQ) združuje več kot
100 vrhunskih tehničnih strokovnjakov. Od leta

Kazalo
Vsi programski jeziki SQL Serverja� 3

Using Multicolumn Statistics to get better Query Plans� 11

Strategy and Implementation—A Powerful Duo to Optimize Ajax Applications � 14

Microsoft SQL Server: Evolution from SQL Server 7.0 to SQL Server 2008 R2� 17

Kolofon� 38

2002 je SolidQ postala zaupanja vreden globalni
ponudnik naprednih svetovalnih, mentorskih in
izobraževalnih rešitev za podatkovne, Business
Intelligence, sodelovalne in razvojne platforme.
SolidQ ponudba rešitev, izobraževanj in ad-hoc
mentorstva so vzvodi za pospeševanje rezulta-
tov vaših IT investicij.

Samoumevno je, da se vsi naši sodelavci neneh-
no izobražujejo in izpopolnjujejo, da so lahko
v koraku z najsodobnejšimi IT tehnologijami,
hkrati pa si nabirajo praktične izkušnje z delom
na projektih.

Čeprav smo majhno podjetje, imamo specialiste
za vsa ključna področja:

•	 SharePoint: Robi Vončina, Uroš Žunič

•	 Infrastruktura (Windows Server, Exchan-
ge, ForeFront …): Jože Markič

•	 Azure: Rok Bermež

•	 Razvoj: Rok Bermež, Uroš Žunič

•	 SQL: Dejan Sarka & SolidQ, Rok Bermež

Veseli smo, da se širi dober glas o nas in nam
prinaša vedno več naročil za bolj ali manj zah-
tevne projekte: migracije, nadgradnje, virtuali-
zacija, namestitve in konfiguracije, poslovne in
spletne aplikacije, aplikacije »za oblak« …

Vedno pogosteje se na nas obračajo stranke, ki
potrebujejo nujno pomoč za akutno težavo na
svoji infrastrukturi – naši strokovnjaki so zane-
sljivi in učinkoviti. Prepričajte se sami.

Hvala za zaupanje.

Veselimo se sodelovanja z vami

3

Dejan Sarka

Vsi programski jeziki
SQL Serverja
Ko pomislimo na Microsoft SQL Server, ne glede
na verzijo, najprej pomislimo na programski
jezik Transact-SQL (T-SQL). Seveda je to najbolj
pomemben jezik za delo s tem sistemom. Ven-
dar pa SQL Server ne vsebuje samo relacijske
baze; v paketu je še kar nekaj produktov, pred-
vsem produktov poslovne inteligence. Vsak od
teh produktov uporablja nek svoj jezik. Pa še
osnovni del, torej relacijska baza, podpira kaj
več kot samo T-SQL. Tale članek je sorazmerno
preprost pregled programskih jezikov, ki nam
lahko pridejo prav pri delu s produkti iz paketa
SQL Server 2008 R2.

Relacijska baza (Database Engine)

Že samo relacijski del nam postreže s kopico
jezikov. Posebej se je nabor razširil pri verziji
2005, ko je prišla intenzivna podpora za XML in
.NET.

Transact-SQL (T-SQL)

Najbolj pomemben, osrednji jezik za delo s SQL
Serverjem je T-SQL. To je Microsoftova različica
standardnega ANSI Structured Query Langua-

ge (SQL) jezika. Aplikacije komunicirajo z bazo
preko T-SQL ukazov. Vse delo s podatki, tudi če
gre za CLR proceduro znotraj SQL Serverja, gre
preko T-SQL. Tudi elemente, napisane v drugih
jezikih, mora aplikacija poslati preko T-SQL uka-
zov, torej znotraj T_SQL jezika.

T-SQL je kot vsi SQL jeziki v osnovi deklarativen
jezik. To pomeni, da programska koda ne opi-
suje poteka aplikacije, kako naj se kaj izvede,
ampak opisuje, kaj naj bi aplikacija izvedla. Ti
opisi temeljijo na formalni logiki. Namesto, da
bi pisali podrobno kodo izvajanja, uporabljamo
velike gradnike, SQL stavke. Algoritmi izvajanja
so skriti v SQL stavkih. V naslednji poizvedbi
zahtevamo vsoto prodaje po kategorijah, pod-
kategorijah in produktih za leto 2008, prvo
četrtletje. Primer dela na testni bazi Adventu-
reWorksDW2008R2, ki jo, kot druge demo baze
in projekte, lahko naložimo s spletnega naslova
http://msftdbprodsamples.codeplex.com/.

Kot vidimo, nismo nikjer opisali, kako naj SQL
Server izvede povezavo (JOIN) med različnimi
tabelami, kako naj izvede filter (WHERE), ali
kako naj izvede grupiranje (GROUP BY) podat-
kov. Detaljni algoritmi so skriti v ukazih, izvaja-
nje je prepuščeno SQL Serverju.

XQuery

SELECT pc.EnglishProductCategoryName Category,
 ps.EnglishProductSubcategoryName Subcategory,
	 p.EnglishProductName Product,
	 SUM(s.SalesAmount) Sales
 FROM dbo.FactInternetSales s
	 INNER JOIN dbo.DimDate d
		 ON d.DateKey = s.OrderDateKey
	 INNER JOIN dbo.DimProduct p

		 ON p.ProductKey = s.ProductKey
	 INNER JOIN dbo.DimProductSubCategory ps
		 ON ps.ProductSubcategoryKey = p.ProductSubcategoryKey
 	 INNER JOIN dbo.DimProductCategory pc
		 ON pc.ProductCategoryKey = ps.ProductCategoryKey
 WHERE d.CalendarYear = 2008
 AND d.CalendarQuarter = 1
GROUP BY pc.ProductCategoryKey,
	 pc.EnglishProductCategoryName,
	 ps.ProductSubcategoryKey,
	 ps.EnglishProductSubcategoryName,
	 p.ProductKey,
	 p.EnglishProductName;

4

Dejan Sarka

SQL Server od verzije 2005 naprej podpira XML
podatkovni tip. XML stolpec, torej ena XML
instanca, lahko zasede do 2GB prostora. Bilo bi
lahko precej neučinkovito, če bi brali celotnih
2GB, potrebovali bi pa samo nekaj malega zna-
kov, npr. vrednost enega elementa. Zato SQL
Server podpira poizvedovanje znotraj XML po-
datkov s pomočjo jezika XQuery.

XQuery je standardni jezik za delo z XML instan-
cami. V SQL Serverju ga uporabljamo znotraj
T-SQL ukazov, kot parametre metod XML podat-
kovnega tipa. V naslednjem primeru brskamo
po SQL Server variabli, ki je XML podatkovnega
tipa, z XQuery jezikom. V variabli deklariramo
seznam kupcev z naročili, nato pa s pomočjo
XQuery izraza vrnemo filtriran, sortiran in preo-
blikovan seznam naročil.

DECLARE @x AS XML;
SET @x = N'
<CustomersOrders>
 <Customer custid=«1«>
 <!-- Comment 111 -->
 <companyname>Customer NRZBB</companyname>
 <Order orderid=«10692«>
 <orderdate>2007-10-03T00:00:00</
orderdate>
 </Order>
 <Order orderid=«10702«>
 <orderdate>2007-10-13T00:00:00</
orderdate>
 </Order>
 <Order orderid=«10952«>
 <orderdate>2008-03-16T00:00:00</
orderdate>
 </Order>
 </Customer>
 <Customer custid=«2«>
 <!-- Comment 222 -->
 <companyname>Customer MLTDN</companyname>
 <Order orderid=«10308«>
 <orderdate>2006-09-18T00:00:00</
orderdate>
 </Order>
 <Order orderid=«10952«>
 <orderdate>2008-03-04T00:00:00</
orderdate>
 </Order>
 </Customer>
</CustomersOrders>';
SELECT @x.query('for $i in CustomersOrders/
Customer/Order
 let $j := $i/orderdate
 where $i/@orderid < 10900

 order by ($j)[1]
 return
 <Order-orderid-element>
 <orderid>{data($i/@
orderid)}</orderid>
 {$j}
 </Order-orderid-element>')
 AS [Filtered, sorted and reformatted
orders];

Kot lahko vidimo, je XQuery ukaz parameter
.query metode XML podatkovnega tipa. Metodo
kličemo v T-SQL SELECT stavku. XQuery je meša-
nica deklarativnega in proceduralnega jezika. V
primeru imamo XQuery FLWOR (for – let – whe-
re – order by – return) zanko, ki ustreza for each
zankam drugih proceduralnih jezikov. Obenem
pa se deklarativno sprehodimo do nivoja naročil
(CustomersOrders/Customer/Order), in pri tem
ne navajamo, kako naj SQL Server pride do tja.

.NET

Deklarativni jeziki uporabljajo stavke, ki jih
lahko gledamo kot velike gradnike aplikacije.
Vendar moramo dostikrat narediti kakšna fina
dela. Tu postanejo veliki gradniki nerodni, ali pa
zaradi prevelikega števila parametrov komplici-
rani. T-SQL jezik je tudi omejen samo na delo s
podatki v bazah, in ne moremo, na primer, po-
šiljati rezultatov T-SQL stavkov neposredno na
tiskalnik. Zato od verzije 2005 naprej SQL Server
omogoča pisanje določenih elementov v .NET
jezikih, kot sta npr. najbolj popularna Visual C#
in Visual Basic.

V .NET jezikih lahko napišemo funcije, proce-
dure, trigerje, podatkovne tipe, in agregatne
funkcije. Na ta način razširjamo zmogljivosti SQL
Serverja. Podobno kot XQuery izraze, tudi .NET
elemente izvajamo s pomočjo oziroma znotraj
T-SQL stavkov.

V naslednjem primeru je funkcija, napisana v
Visual C#, ki bo omogočala preverjanje pravil-
nosti niza znakov glede na podan vzorec. Vzorec
podamo v obliki regular expression.

using System;
using System.Data;
using System.Data.SqlClient;

5

Dejan Sarka

using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Text.RegularExpressions;

public partial class CLRUtilities
{
 // Validate input string against regular
expression
 [SqlFunction(IsDeterministic = true,
DataAccess = DataAccessKind.None)]
 public static SqlBoolean fn_
RegexMatch(SqlString inpStr,
 SqlString regExStr)
 {
 if (inpStr.IsNull | regExStr.IsNull)
 return SqlBoolean.Null;
 else
 return (SqlBoolean)Regex.
IsMatch(inpStr.Value, regExStr.Value);
 }

};

Da lahko .NET funkcijo uporabljamo znotraj SQL
Serverja, moramo importirati assembly v bazo,
ter nato deklarirati funkcijo. Poleg tega moramo
eksplicitno dovoliti izvajanje .NET kode znotraj
SQL Serverja; privzeto je to prepovedano. Na-
slednja T-SQL koda dovoli uporabo .NETa, uvozi
assembly, deklarira funkcijo, ter jo uporabi za
preverjanje dveh e-mail naslovov. Pri prvem
vrne vrednost True (1), ker je naslov veljaven,
pri drugem pa False (2).

-- Create assembly
CREATE ASSEMBLY CLRUtilities
FROM 'C:\MDSBook\ProgrammingLanguages\
CLRUtilities.dll';
GO
-- Create function
CREATE FUNCTION dbo.fn_RegexMatch
 (@inpstr AS NVARCHAR(4000), @regexstr AS
NVARCHAR(4000))
RETURNS BIT
EXTERNAL NAME CLRUtilities.CLRUtilities.
fn_RegexMatch;
GO
-- Enable CLR
EXEC sp_configure 'clr enabled', 1
RECONFIGURE
GO
-- Test function
SELECT dbo.fn_RegexMatch(
 N'dsarka@solidq.com',
 N'^([\w-]+\.)*?[\w-]+@[\w-]+\.
([\w-]+\.)*?[\w]+$') AS ValidMail,

 dbo.fn_RegexMatch(
 N'dsarka$solidq.com',
 N'^([\w-]+\.)*?[\w-]+@[\w-]+\.
([\w-]+\.)*?[\w]+$') AS InvalidMail;

Mimogrede smo poleg Visual C# vpeljali še en
»mini« jezik: Regular Expressions. To je jezik
za definiranje vzorcev nizov, ki ga T-SQL sam
po sebi ne podpira. No, s pomočjo C# funkcije
smo razširili zmogljivosti T-SQL. Funkcijo lahko
uporabljamo kot bolj napredno različico stan-
dardnega LIKE operatorja.

PowerShell

SQL Server vsebuje svojo command-line apli-
kacijo SQLCMD.EXE, ki omogoča pisanje T_SQL
ukazov iz ukazne vrstice operacijskega sistema.
Windows operacijski sistem ima svoje okolje
za pisanje administrativnih skript, imenovano
PowerShell. PowerShell omogoča precej več kot
SQLCMD. PowerShell je razširljiv, in SQL Server
pri instalaciji doda svoje elemente. PowerShell
omogoča uporabo T-SQl stavkov, pa tudi .NET
razredov, do katerih imamo znotraj PowerShella
vmesnike, imenovane cmdlets.

Naslednji primer prikaže, kako v SQL Power-
Shell-u napišemo T-SQL ukaz. Ta ukaz nam bo
samo prikazal trenutni datum in čas. SQL Server
PowerShell okolje zaženemo iz Windows ukazne
vrstice z ukazom SQLPS, nato pa vpišemo Invo-
ke-Sqlcmd ali katerikoli drugi SQL PowerShell
ukaz.

PS SQLSERVER:\> Invoke-Sqlcmd -Query
»SELECT GETDATE() AS TimeOfQuery;«
-ServerInstance »SOLIDQDS«

Ta primer je seveda zelo enostaven. Vendar
lahko s pomočjo SQL PowerShella zelo avtoma-
tiziramo administracijo, izvajanje skriptov, in še
marsikaj drugega.

Skripting jeziki

Enostavni skripting jeziki, kot sta VBScript in
Java Script, so dandanšnji že nekoliko zastareli.
Napredni administratorji sistema SQL Server so
jih uporabljali ali jih še uporabljajo za avtomza-

6

Dejan Sarka

cijo administracije ter tudi za druge naloge. V
sedanjem času je bolj priporočljivo uporabljati
PowerShell. Zaradi kompatibilnosti za nazaj
SQL Server še vedno podpira skripting jezike v
korakih avtomatiziranih opravil, ki ji izvaja SQL
Server Agent.

V naslednjem primeru kreiramo opravilo (sche-
duled job) z enim korakom (step). Step je tipa
ActiveX Scripting step. Vse kreiramo s pomočjo
T-SQL procedur, ki se nahajajo v Msdb sistemski
bazi. VBScript koda je podana kot @command
parameter procedure sp_add_jobstep.

USE msdb;
GO
-- Drop job if exists
IF EXISTS (SELECT job_id
 FROM msdb.dbo.sysjobs_view
 WHERE name = N'VBScriptJob')
EXEC msdb.dbo.sp_delete_job @job_name =
N'VBScriptJob';
GO
-- Create job
DECLARE @jobId BINARY(16)
EXEC msdb.dbo.sp_add_job @job_
name=N'VBScriptJob',
		 @enabled=1,
		 @notify_level_eventlog=0,
		 @notify_level_email=0,
		 @notify_level_netsend=0,
		 @notify_level_page=0,
		 @delete_level=0,
		 @description=N'No description
available.',
		 @category_name=N'[Uncategorized
(Local)]',
		 @owner_login_name=N'ADVENTUREWORKS\
Administrator',
 @job_id = @jobId OUTPUT;
-- Create VB Script step
EXEC msdb.dbo.sp_add_jobstep @job_id=@jobId,
@step_name=N'Rename a file',
		 @step_id=1,
		 @cmdexec_success_code=0,
		 @on_success_action=1,
		 @on_success_step_id=0,
		 @on_fail_action=2,
		 @on_fail_step_id=0,
		 @retry_attempts=0,
		 @retry_interval=0,
		 @os_run_priority=0, @
subsystem=N'ActiveScripting',
		 @command=N'Dim objFSO, strFolder,
objFolder, objFile, colFiles
 Set objFSO =
CreateObject(»Scripting.FileSystemObject«)

 strFolder = »C:\MDSBook\
ProgrammingLanguages«
 Set objFolder = objFSO.
GetFolder(strFolder)
 Set colFiles = objFolder.
Files
 For Each objFile in
colFiles
 If objFile.Name =
»FileToRename1.txt« Then
 objFile.Name =
Replace(objFile.Name,«1«,«2«)
 ElseIf objFile.Name =
»FileToRename2.txt« Then
 objFile.Name =
Replace(objFile.Name,«2«,«1«)
 End If
 Next
 Set objFSO = Nothing
 Set objFolder = Nothing
 Set colFiles = Nothing',
		 @database_name=N'VBScript',
		 @flags=0;
EXEC msdb.dbo.sp_update_job @job_id = @
jobId, @start_step_id = 1;
EXEC msdb.dbo.sp_add_jobserver @job_id = @
jobId, @server_name = N'(local)';
GO
Opravilu nismo dodali nobenega urnika,
zato ga moramo zagnati ročno. Primer ne
dela kaj posebnega – če v folderju C:\
MDSBook\ProgrammingLanguages obstaja
datoteka FileToRename1.txt, jo preimenuje v
FileToRename2.txt, če obstaja FileToRename2.
txt, pa jo preimenuje nazaj v FileToRename1.
txt. Primer vseno prikazuje, da lahko SQL
Server Agent servis izkoristimo tudi za kaj
več kot samo za redno izvajanje backupov, za
redno delanje rezervnih kopij.

Windows Management Instrumenta-
tion (WMI)

WMI je zbirka razredov, ki prihaja z operacij-
skim sistemom Windows. Ti razredi nam omo-
gočajo programsko upravljanje operacijskega
sistema. Med drugim omogočajo tudi lovljenje
dogodkov, kot je na primer kreacije datoteke na
folderju. SQL Server doda nekaj svojih WMI ra-
zredov. SQL Server Agent pa omogoča kreacijo
opozoril (alertov), ki reagirajo na WMI dogodke.

Dogodke zajemamo z poizvedbami, ki jih piše-
mo z jezikom Windows Management Instru-
mentation Query Language (WQL). WQL je zelo
enostaven jezik, spominja na SQL jezike; vendar,

7

Dejan Sarka

naš pregled ne bi bil kompleten, če ne pokaže-
mo WQL poizvedbe. V ta namen kreirajmo alert.

USE msdb;
GO
-- Drop alert if exists
IF EXISTS (SELECT name
 FROM msdb.dbo.sysalerts
 WHERE name = N'WMIAlert')
EXEC msdb.dbo.sp_delete_alert @
name=N'WMIAlert';
GO
-- Create alert
EXEC msdb.dbo.sp_add_alert @name=N'WMIAlert',
		 @message_id=0,
		 @severity=0,
		 @enabled=1,
		 @delay_between_responses=0,
		 @include_event_description_in=0,
		 @category_name=N'[Uncategorized]',
		 @wmi_namespace=
 N'\\.\root\Microsoft\SqlServer\
ServerEvents\MSSQLSERVER',
		 @wmi_query=N'SELECT * FROM CREATE_
DATABASE',
		 @job_name=N'VBScriptJob';
GO

WQL poizvedba je podana kot @wmi_query
parameter sistemske procedure sp_add_alert.
Poudarimo naj še, da je imenski prostor za
SQL Server WMI objekte točno določen, kot
je vpisan v parameter @wmi_namespace. Kot
odgovor na dogodek kreacije SQL Server baze
bo alert zagnal job VBScriptJob, ki smo ga nare-
dili v prejšnjem delu, ko smo opisovali uporabo
skripting jezikov v SQL Serverju. Alert testiramo
tako, da kreiramo bazo (po testu seveda tudi
pospravimo za sabo):

USE master;
GO
CREATE DATABASE TestWMI;
GO
DROP DATABASE TestWMI;
GO

Ker so alerti asinhroni, moramo počakati nekaj
sekund, potem pa mora biti testna datoteka
preimenovana.

Analysis Services

SQL Server Analysis Services (SSAS) je namen-
ski podatkovni strežnik, namenjen za analize
multidimenzionalnih struktur ter za data mining
analize. Celoten strežnik je prilagojen hitrim
in zahtevnim analizam. Multidimenzionalne
strukture so namenjene sprotnim pregledom
velike količine podatkov (On-Line Analytical
Processing, OLAP). Strukturo si predstavljamo
kot večdimenzionalno hiperkocko (seveda si
kocko lahko predstavljamo samo v treh dimen-
zijah, vendar SSAS ni omejen s tremi dimenzi-
jami), zato tudi govorimo o OLAP kockah. Data
Mining del pa obsega matematično, predvsem
statistično zahtevne analize, ki nam dajo vzorce
v podatkih. Vzorce uporabljamo za napovedova-
nje neke ciljne variable v novih podatkih. Data
Mining je najbolj napreden del poslovne inte-
ligence, daje lahko najboljše rezultate, vendar
zahteva tudi največ znanja.

MDX

Za preiskovanje OLAP kock uporabljamo jezik
MultiDimensional eXpressions (MDX). Na hitro
je jezik podoben T-SQL, saj je ravno tako dekla-
rativen. Vendar moramo vedeti, da MDX SELECT
lahko vrne do 128 dimenzij, torej lahko vrne hi-
perkocko, in ne samo tabele, kot T-SQL. Tabelo
navsezadnje lahko gledamo kot dvodimenzio-
nalno kocko z dimenzijama stolpci in vrstice.

MDX jezik je precej kompleksen. K sreči večino
poizvedb naredimo z OLAP odjemalskimi orodji,
kot je na primer Microsoft Office Excel 2010.
Pivot tabelo ali graf oblikujemo preko uporab-
niškega vmesnika, Excel pa za nas kreira MDX
poizvedbe. No, da bi polno izkoristili Analysis
Services, je vendarle dobro vedeti, kako pišemo
MDX poizvedbe in izraze. Naslednji primer MDX
poizvedbe dela na AdventureWorks2008R2
testnem SSAS projektu, ki ga dobimo skupaj s
testnimi bazami.

SELECT [Customer].[Customer Geography].
[Country] ON COLUMNS,
 NON EMPTY [Date].[Calendar].[Calendar

8

Dejan Sarka

Year] ON ROWS
 FROM [Adventure Works]
 WHERE ([Measures].[Internet Sales Amount],
 [Product].[Product Categories].
[Category].[Bikes])

V tem primeru želimo pivotiranje vrednosti pro-
daje po državah v stolpcih in letih v vrsticah (pri
tem izločimo leta brez prodaje), in sicer samo za
produkte kategorije kolesa.

DMX

Za poizvedbe nad SSAS Data Mining modeli
uporabljamo Data Mining eXtensions (DMX) je-
zik. S tem jezikom lahko pregledujemo vsebino
modela, to je najdene vzorce, ter tudi napove-
dujemo ciljno variablo na novih podatkih.

DMX jezik je še bolj podoben T-SQL kot MDX.
Pravzaprav gre za poenostavljen T-SQL z nekaj
specifičnimi Data Mining izrazi. DMX SELECT
tako kot T-SQL SELECT vrača dvodimenzionalne
tabele. Vendar DMX lahko vrne gnezdene ta-
bele v stolpcih zunanje tabele. Naslednja DMX
poizvedba preiskuje vsebino Decision Trees
modela, ki pride z AdventureWorksDW2008R2
testnim projektom.

SELECT NODE_CAPTION,
 NODE_DESCRIPTION,
 NODE_DISTRIBUTION
 FROM [TM Decision Tree].Content
 WHERE NODE_TYPE = 3;

Če se želimo znebiti gnezdenih tabel, lahko
rezultat »sploščimo« s ključno besedo FLATTE-
NED.

SELECT FLATTENED
 NODE_CAPTION,
 NODE_DESCRIPTION,
 NODE_DISTRIBUTION
 FROM [TM Decision Tree].Content
 WHERE NODE_TYPE = 3;

T-SQL

Morda je nekoliko manj znano, a Analysis Ser-
vices podpira tudi nekaj Transact-SQL poizvedb.

SSAS ima namreč vpoglede (view), takoimeno-
vane Schema Rowsets, ki nam v tabelarični obli-
ki prikazujejo sistemske podatke. SSAS Schema
Rowsets lahko primerjamo s SQL Serverjevimi
Dynamic Management Views. V naslednjem
primeru uporabljamo DISCOVER_OBJECT_AC-
TIVITY schema rowset, da dobimo 20 najbolj
uporabljanih objektov v SSAS bazi.

SELECT TOP 20
 OBJECT_PARENT_PATH,
 OBJECT_ID,
 OBJECT_CPU_TIME_MS AS CPU,
 OBJECT_READS AS Reads,
 OBJECT_ROWS_SCANNED AS [Rows]
 FROM $SYSTEM.DISCOVER_OBJECT_ACTIVITY
 ORDER BY OBJECT_CPU_TIME_MS DESC;

.NET

Tudi tale del za SSAS ni tako razglašen kot za
SQL Server, pa je vendar vredno omembe: tudi
Analysis Services podpira .NET procedure. Tule
je primer dveh funkcij, ki bosta vrnili ime analit-
skega strežnika, na katerega smo se priklopili, in
ime baze, v katere kontekstu se nahajamo.

using System.Text;
using System.Data;
using System.Data.OleDb;
using ADOMD = Microsoft.AnalysisServices.
AdomdServer;

namespace ServerProcs
{
 public class ASProcs
 {
 public static string GetSvrId()
 {
 return ADOMD.Context.
CurrentServerID;
 }

 public static string GetDbName()
 {
 return ADOMD.Context.
CurrentDatabaseName;
 }
	 }
}

Poleg .NET procedur sta MDX in DMX jezika
razširjena še z nekaj Visual Basic for Applica-
tions (VBA) in Excel funkcijami. Vendar je tule

9

Dejan Sarka

pomembna razlika: VBA funkcije so že vgrajene
v SSAS, medtem ko moramo za uporabo Excel
funkcij Excel instalirati na isti računalnik kot
Analysis Services. SSAS ima vgrajene samo vme-
snike za klic Excel funkcij. Naslednji primer kaže
uporabo .NET in VBA funkcij v DMX poizvedbi.

SELECT SSASProcs.GetSvrId() AS ServerName,
 SSASProcs.GetDbName() AS DatabaseName,
 VBA.Now() AS CurrentDateTime
 FROM [Customer Clusters];

XMLA

XML for Analysis (XMLA) je edini protokol, ki ga
SSAS uporablja za komunikacijo z aplikacijami.
XMLA je odprt standard za dostop do analitskih
storitev preko spleta (da, SSAS je že sam po sebi
Web Service). Preko XMLA klicev lahko naredi-
mo resnično lahko odjemalsko aplikacijo, npr.
kar znotraj Internet Explorerja.

MDX jezik je namenjen samo za poizvedbe in
kreiranje izrazov za razne izračune. MDX nima
ukazov za kreacijo OLAP kock ali za procesira-
nje (polnjenje in računanje agregatov) kock.
Analysis Services uporablja XMLA za data defi-

nition, data manipulation, in data control ukaze.
Zato XMLA za SSAS rezširja osnovno XMLA 1.1
specifikacijo.

XMLA ukaze lahko pišemo neposredno v XMLA
Query oknu v SQL Server Management Studiu
(SSMS). S pomočjo SSMS lahko tudi kreiramo
XMLA skripte na osnovi obstoječih objektov, ter
tako naredimo rezervno kopijo definicij objek-
tov. Kot primer tule prikazujemo XMLA skripto
za procesiranje Adventure Works kocke iz te-
stnega SSAS projekta.

DAX

PowerPivot je nov analitski produkt, ki je izšel
skupaj s SQL Serverjem 2008 R2. Na voljo je kot
brezplačen dodatek (add-in) za Excel 2010 ter
za SharePoint 2010. PowerPivot je, da podamo
kratko definicijo, »in-memory column-oriented
relational database management system«.
Torej, gre za sistem za upravljanje baz, ki te-
melji na relacijskem modelu, kar pomeni, da
so podatki organizirani v tabele. Interno tabele
ne shranjuje po vrsticah, kot jih mi vidimo, am-
pak vsak stolpec posebej, sortirano. Trenutno

<Batch xmlns=«http://schemas.microsoft.com/analysisservices/2003/engine«>
 <Parallel>
 <Process
 xmlns:xsd=
 »http://www.w3.org/2001/XMLSchema«
 xmlns:xsi=
 »http://www.w3.org/2001/XMLSchema-instance«
 xmlns:ddl2=
 »http://schemas.microsoft.com/analysisservices/2003/engine/2«
 xmlns:ddl2_2=
 »http://schemas.microsoft.com/analysisservices/2003/engine/2/2«
 xmlns:ddl100_100=
 »http://schemas.microsoft.com/analysisservices/2008/engine/100/100«
 xmlns:ddl200=
 »http://schemas.microsoft.com/analysisservices/2010/engine/200«
 xmlns:ddl200_200=
 »http://schemas.microsoft.com/analysisservices/2010/engine/200/200«>
 <Object>
 <DatabaseID>Adventure Works DW 2008R2</DatabaseID>
 <CubeID>Adventure Works</CubeID>
 </Object>
 <Type>ProcessFull</Type>
 <WriteBackTableCreation>UseExisting</WriteBackTableCreation>
 </Process>
 </Parallel>
</Batch>

10

Dejan Sarka

PowerPivot deluje izključno v pomnilniku – pre-
den lahko karkoli delamo, mora PowerPivot vse
podatke naložiti v pomnilnik.

Poleg podatkov, ki jih naložimo iz raznih virov,
lahko dodamo izračunane vrednosti. Za te izra-
čune potrebujemo programski jezik. PowerPi-
vot uporablja Data Analysis Expressions (DAX).
Ideja, zakaj imeti še en dodatni jezik, izhaja iz
želje, da je delo s PowerPivot čim bolj podobno
delu z Excelom in na ta način enostavnejše za
uporabnike Excela.

Za hiter primer smo uporabili dbo.vTargetMail
view iz AdventureWorksDW2008R2 testne
baze. Podatke smo iz SQL Serverja uvozili v
PowerPivot v Excelu 2010, nato pa izračunali
število kupcev s pomočjo DAX COUNTA funkcije:

=COUNTA('vTargetMail'[CustomerKey])

Kot vidimo, se v DAX sklicujemo na neko vre-
dnost s sintakso 'tabela'[stolpec].

Nadaljevanje članka v naslednji Piki...

Dejan Sarka

Dejan Sarka se osredotoča na razvoj baz podat-
kov in poslovnih aplikacij. Poleg projektov po-
sveti približno polovico svojega časa za usposa-
bljanje in mentorstvo. Je ustanovitelj slovenskih
SQL Server in .NET Users Group. Dejan Sarka je
glavni avtor ali soavtor devetih knjig o podat-
kovnih bazah in SQL strežnikih. Razvili je tudi
dva tečaja in številne seminarje za Solid Quality
Mentors.

Dejan Sarka

4.-8. april Microsoft BI Bootcamp 2010 5 dni
4.-6. maj #2778 Writing Queries Using Microsoft SQL Server 2008 Transact-SQL 3 dni

6.-10.
junij

#6232 Implementing a Microsoft SQL Server 2008 Database 5 dni

20.-24.
junij

#6231: Maintaining a Microsoft SQL Server 2008 Database 5 dni

4.-8. julij Advanced Transact-SQL 5 dni

11. julij
NOVO!

Master Data Management with SQL Server 2008 R2
Za udeležence tečaja Advanced Transact-SQL je cena tega tečaja samo 200,00 €
+ DDV!

1 dan

11

Herbert Albert

have a filter on COL1 and COL2 on a table with
200000 rows and the estimate for COL1 is 20000
and the estimate on COL2 is 10000. But as we
don’t know if there is any correlation between
COL1 and COL2 the result can be anything bet-
ween 0 and 10000 rows even when the single
column statistics are 100% correct.

In that case multicolumn statistics can help
to get more accurate statistical data as they
are built over the value distribution over both
columns. Multicolumn statistics are created
automatically for composite indexes, or can be
created manually, but they are never created
automatically without a composite index. So
in the case above we would not have a good
statistic over both columns, if we don’t have a
composite index or create a statistic manually
and SQL Server has to estimate something bet-
ween 0 and 10000 based on the single column
statistics it can create.

Let’s have a look what SQL server does in that
cases. You can download the script to create a
sample table here: (please add a link) The table
has the following layout where ID is the Primary
Key and COL4 only serves as filler column:

CREATE TABLE dbo.teststat
	 (ID int IDENTITY(1,1) PRIMARY KEY,
	 COL1 varchar(10),
	 COL2 varchar(10),
	 COL3 varchar(10),
	 COL4 char(1000));

In addition the script creates indexes on COL1,
COL2 and COL3 and fills the table with 2000
sample rows with the following distribution:

Using Multicolumn
Statistics to get better
Query Plans
Columns statistics are an integral part of query
optimization in SQL Server. SQL Server needs
statistics to estimate the amount of data that
needs to be processed at the different stages
of the query execution. If SQL Server is missing
good statistics there is a good chance that it will
not find the most efficient plan. In this article
we will see how multicolumn statistics can be
used to get better query plans. It assumes that
you have a basic understanding on statistics in
SQL Server. You can find good information on
how SQL Server creates and uses statistics in
the whitepaper: Statistics Used by the Query
Optimizer in Microsoft SQL Server 2008 (http://
msdn.microsoft.com/en-us/library/dd535534.
aspx)

Statistics can be created in 3 ways:

•	 Automatically for columns used a searcha-
ble arguments in queries when “Auto Create
Statistics” is enabled in the database

•	 Statistics are created for every index crea-
ted in the database

•	 Manually created statistics

Statistics can be created for single columns on a
table to estimate the selectivity when applying
a filter on that column. But if there are filters
on multiple columns on a table, single column
statistics are only of limited use. Consider you

COL1 COL2 COL3
Distinct Values 10 20 20
Rows per Value 200 100 ~100 (random)

12

Herbert Albert

Let’s first concentrate on COL1 and COL3. If we
write a query and filter on COL1 SQL Server esti-
mates correctly 200 rows and uses a clustered
index scan as the index on COL1 is not selective
enough. The same happens when we filter on
COL3 only. Please note that the returned num-
bers can be varying as the values in COL3 were
generated randomly. If we now filter on COL1

Now let’s have a look what happens when we
query COL1 and COL2. If you query COL1 and
COL2 alone SQL makes the right estimation, but
if we filter by COL1 = ’A1’ AND COL2 = ‘A1B1’ SQL
Server estimates to get only 10 rows back and

and COL3 SQL Server has to calculate the esti-
mated row count based on the single column
statistics on the 2 columns. Below you can see
the query plan generated. SQL Server estimates
to get 8,9 rows and uses the indexes on COL1
and COL3 to return the data because of the high
selectivity. The actual rows returned are 6 in my
case.

therefore again decides to use indexes to return
the data as you can see below. In reality in that
case 100 rows are returned which would be a
selectivity that would lead to a clustered index
scan, if SQL Server would estimate correct.

13

Herbert Albert

So what happened here? In the first case the-
re is no correlation between the values in the
2 columns. In the second case there is a full
correlation between the values in the columns.
Actually every value within COL2 only exists in
combination with a distinct value within COL1.
And that is the problem. As SQL Server doesn’t
know about any correlation between the co-
lumns it has to guess something. In that case
SQL Server always assumes that there is no
correlation between the values in the different
columns. This is perfect for the first case, but
leads to a wrong plan in the second case.

To overcome this problem we can create a mul-
ticolumn statistic manually to help SQL Server
to make the correct estimation.

CREATE STATISTICS teststat_col1_col2 ON dbo.
teststat(COL1,COL2);

After doing this we can see that SQL Server
performs a clustered index scan as he estimates
correctly 100 rows which are not selective eno-
ugh to seek any of the available indexes as you
can see below.

 What we have seen is that the combination of
different single columns statistics can be used
to make good estimations for filters on multiple
columns on a table, if there is no or only a small
correlation between them. But if a correlation
exists the estimations can lead to wrong plans.
In that case multicolumn statistics can be consi-
dered if a composite index is not suitable.

Please note that the example used in that arti-
cle is oversimplified to be able to concentrate
on the statistics only. Especially the indexes
used in that example would not be used in
reality as none of them is selective enough to
cover a query on even a single value. Therefore
in reality it would not be a good idea to create
them at all. In real live that cases happens mo-
stly in cases where you have selective indexes
on the columns. But for some queries the rows
are filtered in ranges or based on multiple valu-
es using an IN operator, which produces a none

selective query which will not be recognized as
SQL Server doesn’t realize that column values in
the different filter columns are correlated and
therefore underestimates the rows returned.
And these are the cases where you should con-
sider creating multicolumn statistics.

14

Herbert Albert

Herbert Albert

Herbert Albert je MCSE, MCTS, MCITP, MCDBA
in MCT za SQL Server. Je SQL Server predava-
telj, svetovalec in direktor Srednjeevropske
enote SolidQ. Njegovo znanje pokriva širok
spekter Microsoft tehnologij in mrežne arhi-
tekture, predvsem pa se osredotoča na SQL
Server. Je soavtor "SQL Server 2008 (R2)Up-
grade Technical Reference Guide" in "SQL Ser-
ver 2005 Step-by-Step Applied Techniques”,
Microsoft Press 2006.

Herbert Albert (tečaji so v angleščini)

30.3.-
1.4.2011

NOVO!
Prvič v Sloveniji!

Troubleshooting and Performance Tuning for SQL Server 2008 3 dni

Strategy and Imple-
mentation—A Power-
ful Duo to Optimize
Ajax Applications
In general, performance is not an exact science;
let alone it is in the realm of Web Ajax applica-
tions. If I have to indicate a golden rule of Ajax
optimization, then I would say that saving your
application some work is always a good way to
improve its performance. This leads me to the
fundamental question behind optimization: Is
there anything you can take out of the code?

In computer science, there’s an absolute way
of measuring the goodness of an algorithm—
computational complexity. Through computati-
onal complexity you just measure the number
of fundamental operations a given algorithm
performs on an input data set. Sometimes,
however, you have no other choice than going
with a given algorithm. Put another way, if you
can’t just improve on the algorithm you can

apply shortcuts to its implementation and get
better performance by avoiding some work.
The general answer to this question is caching,
but caching can be applied at various levels. In
this article, I’ll discuss two general patterns that
help getting results quicker in Ajax applications.
The first pattern is Predictive Fetch; the second
is Memoization. As you can see, both revolve
around the general theme of caching.

The Predictive Fetch Pattern

The idea behind the pattern is just predicting
the next user actions and preloading some of
the data that it will be necessary to use later—if
the user will really perform the predicted ac-
tion. Downloaded during idle time or, simply
asynchronously in the background, data is ca-
ched on the client using some JavaScript object.
Next, when the user triggers the action for
which the previously cached data is required,
some client-side code retrieves that and uses
to refresh the user interface as appropriate.
In the end, the Predictive Fetch pattern is a
sort of context-sensitive, client-side cache that

15

Dino Esposito

The Memoization Pattern

Caching is nothing new in software and is an
effective way to save some work. At its core,
caching consists in the software’s ability of
retrieving data from a location that is quicker
to access compared to the original source. Ca-
ching is not limited to data loading; caching can
be applied to calculated results. This is just the
essence of the pattern.

In JavaScript, functions can contain properties
as well as a behavior. You can use this feature
to give your JavaScript functions—at least, the
most sophisticated and performance critical
of them—a private cache to store values of
previous calculations. In this way, next time
a previously calculated value is requested it is
served immediately without having to execute
the potentially long operation again. Here’s an
example:

var getDetails = function(id) {
 var thisFunc = arguments.callee,
 result;
 if (!thisFunc.cache[id]) {
 result = _longOperation(id);
 thisFunc.cache[id] = result;
 }
 return thisFunc.cache[id];
}
getDetails.cache = {};

The function getDetails has its own private ca-
che where it stores computed results. Results
are stored by parameter. If you need to store
by multiple parameters you can save the list
of parameters—as returned by arguments—to
an array and then to a JSON string. When the
following sequence of calls occur, the return
value is calculated only the first time for each
combination of input parameters.

var a1 = getDetails(2);
var a2 = getDetails(2);
var a3 = getDetails(1);

Saving work, especially if it is a hard and long
work, definitely improves performance. In this

requires a well-defined strategy about what to
download and when to download it.

From a functional standpoint, predictive fetch is
not such a hard pattern to implement. The real
point with predictive fetch is all another—devi-
sing an effective strategy. You can’t pre-fetch
just any data the user can possibly request
and from any stage of the user interface. You
must be careful to cover the most likely acti-
ons and/or the most critical regardless of their
likelihood. As you can see, the strategy is the
most important aspect of predictive fetch and
it is not something that can be hard-coded in a
recurring pattern solution. It is part of the archi-
tecture and belongs to the overall solution. The
main drawback of predictive fetch is loading the
wrong data that will never be requested by the
user. This creates unnecessary overhead and
also may end up taking up some memory in
the client PC. Another point to take into due
account is the overall behavior of the applica-
tion that may appear to be sort of random, if
not inconsistent, to the end user. Imagine two
similar features in a page—one that supports
predictive fetch and one that doesn’t. Clearly,
when the user selects the one that doesn’t have
pre-fetch she faces a much longer response
time. When she selects the other function, the
response time is immediate. This may be con-
fusing and may contribute to create a negative
feeling around your application.

Imagine at some point your user may decide to
click and download details about a customer.
Next, he may, or may not, wish to drill down
into the orders placed by that customer. Here’s
the tricky point. With predictive fetch enabled,
at the end of the callback that updates the UI
with the details of the customer you trigger
another remote call to download orders. If later
the user decides to look at the orders, data is
already there. If not, you placed a useless extra
request.

16

Dino Esposito

regard, a special mention is also worth for
special cases. Whenever you realize that for a
particular combination of parameters you can
get return values more quickly than usual, by all
means take the shortcut. Adding a bunch of IF
statements around the body of a function may
not seem elegant, but if it helps getting a better
performance I usually do that.

Summary

Performance is often a relative concept in the
Web. Sometimes there’s room for redesigning
the code, changing the algorithm and achieve
better and faster results. In some other times,
you have to resort to giving users the percepti-
on of a better performance by optimizing the lo-
ading time and providing visual feedback during
long operations. The two patterns examined
touch on two different views—optimization by
strategy and optimization by implementation.

Dino Esposito

Dino Esposito je avtor "Programiranje ASP.NET
MVC" za Microsoft Press, kot tudi "Program-
ming ASP.NET 4" in drugih knjižnih uspešnic, kot
so "Microsoft ® NET: Architecting Applications
for the Enterprise". Redno sodeluje z MSDN
Magazine in DevProConnections Magazine in
pogosto predava na tehničnih dogodkih po
vsem svetu, vključno z Microsoft TechEd, Dev-
Connections in vrhunskih evropskih dogodkih,
kot so DevWeek in BASTA.

Dino Esposito (tečaji so v angleščini)

27.-29.
junij

.NET Software Architecture - Patterns of Application Architecture 3 dni

30.-1.
julij

Workshop: Patterns and Practices of Architecting .NET Applications 2 dni

Posebna ugodnost: za kandidate, ki se prijavijo na oba dela tečaja, je kotizacija samo 1.500,00 € + DDV!

3.-5.
oktober

Programming ASP.NET MVC 3 dni

6.-7.
oktober

Mastering Javascript and jQuery 2 dni

Posebna ugodnost: za kandidate, ki se prijavijo na oba dela tečaja, je kotizacija samo 1.500,00 € + DDV!

17

Dejan Sarka

Microsoft SQL Server:
Evolution from SQL
Server 7.0 to SQL Ser-
ver 2008 R2
Excerpt

Microsoft SQL Server became a true enterprise-
-level database management system (DBMS)
with SQL Server 7.0. But the evolution didn’t
stop there. SQL Server has come a long way in
the past 10 years. This white paper provides an
overview of SQL Server enhancements during
this evolutionary journey, covering the SQL
Server suite of services and tools for both the
relational database engine and business intelli-
gence (BI).

This white paper is organized historically. It co-
vers the most important features from version
to version, showing how the product has matu-
red over time to satisfy ever growing business
needs. The paper starts with SQL Server 7.0,
moves to SQL Server 2000, 2005 and 2008, and
then ends with a discussion of SQL Server 2008
R2, which is available from this year (2010).
Although this paper focuses on the ongoing
improvement process, it also mentions some
unfortunate features—including some that
have been or will be abandoned.

SQL Server 7.0: Sphinx

Let’s start our historical look at SQL Server
with Version 7.0, also known by the code name
Sphinx. This version was revolutionary in many
ways. Microsoft rewrote the storage engine
from scratch, including a new locking mecha-
nism and provided completely new tools. SQL
Server 7.0 was the first version seriously tar-
geting the enterprise market, providing both
performance and scalability. And SQL Server
7.0 was the first version of the product that
included OLAP functionality for free within the

suite, which changed the OLAP market forever.
Starting with SQL Server 7.0, OLAP became af-
fordable for small and medium businesses, and
not limited solely to large enterprises.

A New Database Engine

The code base for SQL Server originated in Sy-
base SQL Server. But with SQL Server 7.0, Micro-
soft moved away from Sybase code, rewriting
the database engine from scratch. Microsoft
developers did an excellent job; the SQL Server
7.0 storage engine remains the foundation for
newer SQL Server versions’ storage engine.

Microsoft developers increased the basic sto-
rage unit for data, the page, from 2K to 8K.
The same page size is still used in SQL Server
2008. SQL Server 7.0 was also the first version
that dynamically managed memory and files on
disk. Although some IT professionals thought
these management features would make the
database administrator (DBA) role obsolete,
they instead freed up DBAs to focus on more
meaningful tasks, making the role more valua-
ble than ever, especially for medium and large
databases. However, with SQL Server 7.0’s new
self-management capabilities, small companies
no longer needed extensive database mana-
gement knowledge in-house to operate SQL
Server.

SQL Server 7.0 was the first version of the pro-
duct available on desktop computers through
the free Microsoft Desktop Edition (MSDE). This
edition—called SQL Server Express in later versi-
ons—was and still is useful together with merge
replication to support disconnected users. Mer-
ge replication, also new in SQL Server 7.0, lets
disconnected workers such as sales representa-
tives travel around with their notebooks, insert
orders, and update customer data, then merge
their changes with changes on the central,
production server when they reconnect. Merge
replication worked in all editions of SQL Server
7.0, including MSDE. In addition to merge repli-
cation, SQL Server 7.0 also provided snapshot

18

Dejan Sarka

zard (ITW)—to quickly get reasonable recom-
mendations for indexes based on this real-time
usage data from Profiler. The ITW worked well
as long as the sample of captured queries was
representative of your overall workload.

The main new SQL Server 7.0 tool for developers
was SQL Server Query Analyzer. Although it had
a small footprint, Query Analyzer was powerful
and popular among database developers; many
of us still miss this tool, which was replaced in
SQL Server 2005 by functionality in the new
SQL Server Management Studio (SSMS). Query
Analyzer was handy for ad hoc queries and for
troubleshooting; it was the first tool capable of
graphically showing a query’s execution plan,
making the plan intuitive to understand. Figure
1 shows an example of an execution plan in SQL
Server 7.0 Query Analyzer.

and transactional replication to support the
need for distributed, “scale out” data scenarios
among multiple databases and locations.

Besides the rewritten storage engine, Microsoft
developers also introduced an entirely new set
of database engine tools for SQL Server 7.0. The
main administrative tool was Enterprise Mana-
ger, a Microsoft Management Console (MMC)
snap-in. For performance tuning and trouble-
shooting, SQL Server Profiler provided a rich
user interface for setting up and analyzing ser-
ver traces. Using server traces, you can capture
the commands SQL Server is processing as well
as SQL Server’ s responses to those command.
You can capture errors, warnings, execution ti-
mes, disk I/O, memory and CPU consumption,
and much more. SQL Server 7.0 also let you
then use another tool—the Index Tuning Wi-

Figure 1: Graphical Execution Plan in Query
Analyzer

Among the many database engine enhance-
ments in SQL Server 7.0, developers especially
appreciated the new locking schema. With the
new version, the lowest level of locking granu-

larity became the row level instead of the page
level. Locking escalation was dynamic, so you
didn’t need to manually set the lock escalation
threshold. In addition, accessing remote data
sources from SQL Server was easier than ever
before thanks to linked servers. A linked server,
in short, is a named connection string that uses

19

Dejan Sarka

an OLE DB provider. In SQL Server 7.0, you co-
uld refer to remote data from a Transact-SQL
(T-SQL) query simply by providing the four-part
object name: server, database, schema, and
object. SQL Server 7.0 was also the first version
that let you use full-text searches on database
columns; this capability let you search for words
or phrases against character data.

With Windows integrated security fully imple-
mented in SQL Server 7.0, DBAs could stop wor-
rying about brute-force attacks on SQL logins if
they used only trusted connections and disa-
bled the mixed authentication mode. However,
with the mixed authentication mode, which
means SQL logins, enabled SQL logins were
still exposed to a brute-force attacks, because
SQL Server did not implement any password or
account policies, like account lockout policy, for
SQL logins.

The dramatic improvements in SQL Server 7.0’s
storage engine and tools led to better and more
controllable performance and provided appro-
priate scalability for most business needs in the
late ‘90s. However, DBAs still had a hard time
achieving high availability. For example, to cor-
rectly set up SQL Server in a cluster, you had to
work through a 70-page “How to install SQL Ser-
ver 7.0 Enterprise Edition on Microsoft Cluster
Server” white paper, then check Microsoft’s
“Order of Installation for SQL Server 7.0 Cluste-
ring Setup” Knowledge Base article for updated
information.

OLAP Revolution

Although the new SQL Server 7.0 database
engine was significant, the IT community
expected it. Customers demand that Microsoft
continuously deliver database improvements,
and the company must also try to stay ahead of
or abreast of competitors, who are also always
working to move their products forward. The
real revolution in SQL Server 7.0 occurred in BI.
Although many different Online Analytical Pro-
cessing (OLAP) servers and client tools were on

the market at the time, they all had a common
failing: they were very expensive. The high pri-
ces were primarily related to the target buyers
of OLAP solutions—decision makers, who also
usually control the money. By including OLAP
Services in the SQL Server 7.0 suite for free,
Microsoft changed the OLAP market forever,
bringing OLAP to the masses.

OLAP lets end users change the view of dis-
played data or the report they’re looking at in
real-time, without needing to ask for help or for
a report update from IT support or developers.
There are two main pillars that enable real-time
analysis: simple, predictable schema, which
enables building simple and intuitive client
tools to navigate around, sort, and analyze the
data; and OLAP server performance, which ena-
bles the needed speedy data access. OLAP uses
the well-known star schema, which features
two types of tables: fact tables and dimensions.
Fact tables hold things you are measuring (i.e.,
measures), and dimensions consist of attributes
you are using to break down your measures
(i.e., the elements that let you drill down until
you find interesting information). For example,
a Sales fact table might hold such measures
as sales quantity and sales amount, while the
Customer dimension might have such attributes
as country, region, city, and customer. You start
analyzing from the top, checking the total sales,
then drill down to individual countries, regions,
cities, and customers. OLAP achieves lightning
analysis speed through pre-computed aggre-
gates. So, for example, from detailed data in
your source system, the OLAP server calculates
totals across cities, regions, and countries in ad-
vance instead of being processed for every user
request at the time of the request.

SQL Server 7.0 provided several OLAP tools:
OLAP Services, which was the OLAP server;
Analysis Manager, a tool for developing OLAP
databases and cubes for administering OLAP
databases; and client tools. Microsoft extended
Office Excel to serve as an OLAP Services client

20

Dejan Sarka

tool, and third-party tools started appearing
soon after. Probably the most popular client
tool was ProClarity, a rich client from a com-
pany called Knosys; the company later changed

its name to ProClarity, and in 2007, Microsoft
acquired it. Figure 2 shows a typical star schema
being built in OLAP Manager.

Figure 2: Star Schema in OLAP Manager

One star schema typically covers one business
subject, such as sales, finance, or warehouse.
You connect multiple star schemas through
shared dimensions. And you almost always
have a time dimension as well because nearly
all organizations need to perform analysis over
time. Before building any OLAP cubes, you need
to consolidate data from multiple sources into
multiple star schemas. This consolidation is
typically performed in a relational database
called a data warehouse. A data warehouse
consists of one or more star schemas, with
merged, cleansed, and historical data. From a
data warehouse, you build your OLAP cubes. In
SQL Server 7.0, you couldn’t build an OLAP cube
from the scratch; the schema was inherited
from a relational data warehouse. In addition,

a single cube was limited to a single fact table
(i.e., a single star schema). Although it was pos-
sible to compare data from two fact tables-- for
example, from actual sales and the sales plan--it
wasn’t simple.

To keep your data warehouse current, you must
regularly extract data from sources, transform it
into your data warehouse schema, and load it to
the data warehouse. This regular process is cal-
led Extract-Transform-Load (ETL). You can write
your own ETL application from scratch, but you
can also use a tool that helps you build such
an application. With SQL Server 7.0, Microsoft
shipped a new tool called Data Transformation
Services (DTS) that let you build ETL applicati-
ons called packages. DTS packages were task-
-oriented. In one task, for example, you would

21

Dejan Sarka

extract the data, do the transformations, and
load the transformed data in a staging table.
Then, you would use another task to re-read
the same data for another purpose. Thus, DTS
was actually more ELT than ETL tool.

With DTS, the only way to read data once, do
multiple transformations in memory, and write
the data, was to use the Data Pump task. Inside
the Data Pump task, you could transform data
by using an ActiveX scripting language such
as VB Script. Nevertheless, with the new SQL
Server database engine, OLAP Services, and
DTS, SQL Server 7.0 provided a very powerful
platform for satisfying business needs for data
and information.

SQL Server 2000: Shiloh

Although not as revolutionary as SQL Server
7.0, SQL Server 2000, code-named Shiloh, ne-
vertheless delivered substantial improvements
that made the product even more useful in
companies of all sizes. SQL Server 2000 data-
base engine enhancements included expansion
of the RDBMS to portable devices, supporting
multiple instances of SQL Server on a single
computer, new and expanded integrity checking
mechanisms such as an expanded Foreign Key
constraint and Instead Of triggers, better per-
formance, easier replication management, and
a new mass notifications functionality called
Notification Services. And with its continued
BI improvements, SQL Server 2000 battled for
leadership in a market that it had entered only
one version earlier.

RDBMS Everywhere: From Portable
Devices to Datacenters

With the expansion of Web applications and
different production systems automatically
collecting more and more data, the size of da-
tabases grew dramatically in the late ‘90s. SQL
Server 2000 was prepared for the challenges.
You could install SQL Server 2000 on the most
powerful Microsoft operating system of that

time, Windows 2000 DataCenter Server, with
64-bit architecture support. You could scale
out your database across multiple servers. And
you could split a table’s rows across multiple ta-
bles, which could reside in different databases
on different servers, and then union all of the
rows together through distributed partitioned
views (DPVs). SQL Server 2000 also featured
many other performance improvements, such
as letting you materialize views and computed
columns (i.e., store the result sets in the data-
base) by indexing them.

As many companies started Web and applica-
tion hosting, they needed many SQL Server in-
stances. Installing them on dozens of computers
and purchasing the associated licenses would
have simply been too costly. But SQL Server
2000 let you install up to 16 instances on a sin-
gle computer, with all the licenses covered by
a single Enterprise Edition (EE) license. And on
the lower end, SQL Server Compact Edition (CE)
worked on CE devices and supported merge re-
plication, extending disconnected applications
to nearly any device.

Besides peak performance, the other indispen-
sible requirement for mission-critical applicati-
ons, especially Web applications, is high availa-
bility. As one of its high-availability features, SQL
Server 2000 supported up to four-node clusters
for failover clustering. The setup procedure was
completely cluster aware—no more following a
lengthy white paper to properly install SQL

22

Dejan Sarka

Figure 3: Installing SQL Server 2000 on a Virtual
Server for Failover Clustering

Server in a cluster. Figure 3 shows SQL Server
2000’s cluster-aware installation wizard.

For database developers, user-defined functi-
ons (UDFs) were a valuable addition to T-SQL
in SQL Server 2000. In addition, the product
recognized XML’s growing popularity as a data-
-interchange format. For the many applications
that needed data from SQL queries in XML for-
mat, Microsoft extended the SELECT statement
in SQL Server 2000 with the FOR XML clause.
Instead of a relational table, the result of such
a statement was XML. Of course, you couldn’t
use this clause if you needed your data in relati-
onal format (e.g., in a view definition). However,
being able to retrieve the data in XML format
let you skip a step in transforming relational
data from tabular format to XML format at the
middle tier or client application, thus enabling
faster development and better performing ap-
plications.

SQL Server 2000 improved data integrity from
the referential integrity point of view by exten-
ding the Foreign Key constraint to cascading op-
tions. A foreign key prevents orphaned children
in one-to-many relationships between entities.
For example, a foreign key prevents orders
without customers. SQL Server achieves this
integrity through four rules: preventing inserts
without a parent existing on the child side, up-
dating the parent key on the child side to a value
that does not exist on the child side, preventing
deletion of a parent with children, and preven-
ting update of the parent key on the parent side
if the parent has children. Although a Foreign
Key constraint in SQL Server 7.0 implemented
these four rules, the implementation led to a lot
of coding if you needed to delete a parent with
children. For example; you had to delete the
children first, probably in a stored procedure.
SQL Server 2000 added two more possibilities
for the last two referential rules on the parent
side. With the new CASCADE option, you could

specify deletion of the children if their parent
was deleted or automatic propagation of the
parent key change to all children.

SQL Server 2000 also introduced Instead Of
triggers. Before this version, triggers in SQL
Server could fire only after the transaction.
With Instead Of triggers, you can intercept the
original data modification command, check for
data integrity issues, and reapply a correct com-
mand. In addition, you can intercept the data
modification commands directed to a non-up-
dateable view and send modification comman-
ds to underlying tables, thus making the view
updateable.

Replication in the new version added support
for automatic management of identity ranges in
merge replication scenarios. In SQL Server 7.0,
snapshot and transactional replication already
allowed updates on the replica database (i.e.,
on the subscribers). However, these updates
were executed through a distributed transacti-
on synchronously on the source (i.e., on the pu-
blisher) and on the subscriber. SQL Server 2000
added support for asynchronously updating
subscribers by using queues. You could imple-
ment queues through the Microsoft Message
Queue (MSMQ) service or through SQL Server
tables.

A couple of years after SQL Server 2000’s initial
release, Microsoft added SQL Server Notifica-
tion Services (SSNS) to the version as a free,
downloaded component for Standard or Enter-
prise customers. SSNS was more a development
tool than an application, letting developers
quickly build applications that needed to per-
form mass notifications of subscribers.

Battle for BI Leadership

On the BI side, SQL Server 2000 became a seri-
ous player. The version considerably improved
OLAP cubes, and you could now define security
settings on the lowest possible granularity le-
vel–on members of a dimension and even on
cells of a cube. SQL Server 2000 added an im-

23

Dejan Sarka

portant aggregate function, the Distinct Count
function. Distinct count is important for market
basket analysis, for example, which is based on
the theory that if a customer buys a certain gro-
up of items, he or she is more (or less) likely to
buy another group of items. In the new RDBMS
version, dimensions could support hierarchical
relations if you used the adjacency model in
your relational tables. In the adjacency model,
you use an entity key, a parent entity key, and a
foreign key between the entity and parent enti-
ty keys to model a hierarchy. Examples of hierar-
chies are employees and their managers, bills
of material, and so on. To use such a hierarchy
for a report, you have to expand the adjacency
model in a tree. In SQL Server 2000, this could
be done automatically by so-called parent-child
dimensions. You could use parent-child dimen-
sions for ragged and unbalanced dimensions as
well. Figure 4 shows a hierarchy modeled in an
adjacency model.

Employees

PK EmployeeId

 FirstName
 LastName
FK1 ManagerId
 OtherAttributes

Figure 4: The Adjacency Model

OLAP analysis isn’t the only kind of analysis
organizations need to perform. With OLAP, for
example, you have to define the model in ad-
vance inside OLAP cubes through star schema.
Then, you can do model-driven analysis, drilling
down through one attribute at a time. To create
a view of fact data over a specific combination
of dimension attributes to gain more insight
than a view over a single attribute, you have
to work with a client tool for a while, especi-
ally to find the most meaningful combination
of dimension attributes. Wouldn’t it be nice to

have a tool that could find the most meaningful
combination for you automatically? That functi-
onality is what a technology called data mining
provides. With data mining, you analyze your
data by using advanced mathematical methods
to find meaningful patterns and rules (i.e., a
meaningful model). Thus, data mining provides
data-driven analysis.

SQL Server 2000 added support for two of
the most popular data mining algorithms:
the Decision Trees and Clustering algorithms.
And because the OLAP service wasn’t just for
OLAP analysis anymore, Microsoft renamed it
Analysis Services and renamed OLAP Manager
to Analysis Manager.

Data mining wasn’t mature in Analysis Services
2000. It was Microsoft’s first foray into the data
mining world and couldn’t compare with older
products. However, it paved the road for the
future. Competitive tools were very expensive.
And you could imagine the same revolution
coming in the data mining market as happened
in the OLAP market with SQL Server 7.0—data
mining would sooner or later be available for
the masses.

As noted earlier, ETL applications can be com-
plex, and the better tools you have, the easier it
is to develop such applications. In the ETL spa-
ce, SQL Server 2000 brought significant enhan-
cements to DTS. Standing out among the many
new DTS tasks was the Dynamic Properties task,
which let you read connection settings, table
names, and just about anything else for your
DTS package from an .ini file, a global variable,
an environment variable, a query, a constant, or
a data file. The Data Pump task became a Mul-
tiphase Data Pump, letting you customize the
data pump at various phases of its operation
and add functionality such as:

•	 row-level restartability

•	 individual handling of insert or transforma-
tion errors, such as constraint violation errors

24

Dejan Sarka

on delivered a rewritten Analysis Services with
mature data mining capabilities, a completely
new ETL tool called Integration Services, and
improvements in Reporting Services.

Overcoming T-SQL Limitations

Many DBAs’ first reaction when they started
to explore the novelties in Yukon was fear. SQL
Server 2005 is the first version of the product
not limited solely to the T-SQL language. Yukon
adds support for CLR languages and for XQuery.
Using CLR languages such as Visual Basic .NET
and Visual C#, you can write stored procedures,
UDFs, triggers, and two new objects that you
cannot write in T-SQL–user-defined aggregate
functions and user-defined data types.

DBAs were especially afraid of the CLR language
support, airing their concerns about security
and performance. T-SQL is a limited language—
limited to data operations inside SQL Server
only. With CLR code, developers can do nearly
anything from inside SQL Server, thus intro-
ducing a whole new set of security issues. In
addition, DBAs were concerned that with CLR
code, developers would move from efficient
set-based operations in SQL Server to row-ba-
sed processing and thus introduce a lot of new
performance issues in database applications.

However, Microsoft had not forgotten about
security. DBAs were quickly comforted by
the fact that they do not have to deal with
security in detail. For CLR code, SQL Server
2005 introduced three permission sets: SAFE,
EXTERNAL_ACCESS, and UNSAFE. The SAFE set,
the recommended permission set, limits CLR
code to operations that T-SQL can do. With the
EXTERNAL_ACCESS set, code from SQL Server
can access external resources such as the file sy-
stem and network resources. With the UNSAFE
set, CLR code can do nearly anything, including
directly writing to memory, so it can endanger
SQL Server itself. Of course, you should have a
good reason to use any permission set except
SAFE and be especially careful with the UNSA-

•	 customization of initialization or terminati-
on steps

Using the same release process as for SSNS, a
couple of years after SQL Server 2000’s initial
release, Microsoft added reporting functionali-
ty to the product through a free downloadable
component called SQL Server Reporting Servi-
ces (SSRS). As with SSNS, SSRS was free for users
with a Standard or Enterprise Edition license.
SSRS, still a valuable component in SQL Server
2008, is a platform for creating and managing
reports for relational as well as BI needs. Not
all users need advanced BI capabilities such as
OLAP and data mining, and SSRS adds another
way to fulfill business needs for gathering useful
information from a sea of data. However, many
users didn’t appreciate that the only deve-
lopment tool for SSRS in SQL Server 2000 was
Visual Studio (VS)—and that VS wasn’t shipped
with SSRS. If you didn’t have a valid VS license in
place, SSRS wasn’t exactly “free” for you.

A less fortunate part of the BI suite in SQL
Server 2000 was English Query. With English
Query, you could write applications that accep-
ted users' input entered as English language
questions and then transformed the questions
into database queries. English Query’s life span
was very short; it existed only in SQL Server
2000, never making it to the next version of the
product.

SQL Server 2005: Yukon

SQL Server 2005, code-named Yukon, was the
next release of the database system, and it was
a major one. Microsoft rewrote most of the BI
suite from the scratch, for example, which is the
main reason there are five years between Shiloh
and Yukon. Among the many new features and
enhancements in SQL Server 2005 are Common
Language Runtime (CLR) and XML support in
the database engine, new transaction-isolation
levels, rewritten tools, improved performance
and reliability, and security that meets modern
needs. From the BI perspective, the new versi-

25

Dejan Sarka

namespaces for database objects. You no lon-
ger have to use object owner to group objects
anymore. All we can say is—finally! Schemas
should have been introduced years earlier. You
can now also set permissions on a schema, and
the permissions are inherited on objects inside
the schema, making the job of setting up and
maintaining permissions much easier.

Other security enhancements include SQL lo-
gins that are finally protected; SQL Server 2005
enforces Windows account and password poli-
cies for SQL logins. In addition, triggers are no
longer limited to data modification operations;
a DBA or developer can write data definition
language (DDL) triggers to, for example, prevent
table modifications in a production database.
Data encryption is also now possible with new
encryption functions and complete key and
certificate support. However, using encryption
in SQL Server 2005 means upgrading your appli-
cations. Yukon adds many new detailed permis-
sions as well, and you can overcome problems
with broken ownership chains by specifying the
execution context for programmable objects.
Figure 5 show the complete key and encryption
hierarchy.

From the manageability point of view, the dif-
ference between Yukon and previous versions
is immense. With new catalog and dynamic
management views and functions, a DBA has
detailed insight into SQL Server operations, sta-
te, and resource usage in real time, with T-SQL
queries. In addition, a DBA can use a dedicated
admin connection, which runs in a higher thre-
ad priority, to quickly kill a runaway session. You
can now gather and save execution plans in XML
format, which is simple to consume within an
application. This ability simplifies the viewing of
a large number of plans and lets you easily use
the plans as input for support.

The SQL Server community also needed some
time to really appreciate another Yukon featu-
re: completely rewritten tools. The primary DBA
tool is now SQL Server Management Studio

FE set. In addition, CLR is disabled by default;
a DBA must enable it for an instance by using
the sp_configure system stored procedure.
Concerns about poor performance of CLR code
also disappeared over time; DBAs realized that
a developer can write good or bad code in any
language.

Besides adding the capability of creating CLR
data types, SQL Server 2005 introduced some
new system data types. Probably the most im-
portant among them is the XML data type. You
can finally store XML documents where they
should have been from the start: in a relational
database. Because XML is a large data type,
letting you store up to 2GB of data, customers
need a way to retrieve and update just part of
it. This is where XQuery comes in. XQuery is a
query language for traversing XML nodes, fin-
ding elements and attributes, and even looping
through nodes at a selected level. SQL Server
2005 implements XQuery support through XML
data type methods. The XML data type has
methods to retrieve and update parts of XML
data, and XQuery expressions are parameters of
those methods. The methods are:

•	 query(), which returns part of the XML data
in XML format

•	 value(), which returns a scalar value of an
element or an attribute of an element

•	 exist(), which returns 1 if an element or
an attribute exists in an XML instance, 0 if an
element or an attribute doesn’t exist, and null
if the XML data type instance contains null

•	 modify(), which lets you insert an element
or an attribute, delete an element or an attri-
bute, or update the value of an element or an
attribute

•	 nodes(), which lets you shred an XML data
type instance into relational data

Microsoft wasn’t just concerned about CLR
code security in SQL Server 2005. Yukon con-
tains many other security enhancements,
including properly implementing schemas—as

26

Dejan Sarka

capability makes partitioning inside a databa-
se much easier than with partitioned views.
Another new ability in SQL Server 2005 is
related to database snapshots, which are read-
-only snapshots of a production database at a
specific time point. You can now drive reading
through database snapshots and, with them,
have another way of implementing reading that
doesn’t block writing. And the Index Tuning
Wizard (ITW) has matured into the Database
Tuning Advisor, which gives better optimization
recommendations, including suggestions for
using table partitioning.

SQL Server 2005 also provides new and im-
proved high availability technologies. You can
implement up to eight nodes in a cluster con-
figuration. You can also now perform indexing
online, meaning that applications can use a
table while it is being indexed. The online in-
dexing feature uses the same row versioning
framework used to implement snapshot tran-
saction isolation levels. Last but not least in the
area of new high availability features in Yukon
is database mirroring, which is essentially an
inexpensive alternative to clustering. Database
mirroring maintains two copies of a single da-
tabase that must reside on different instances
of SQL Server, which can reside on computers
in different locations. One server instance, the
principal server, is the production server, while
the other server instance, the mirror server,
acts as a hot or warm standby server. Automatic
failover is possible if a third server instance, the
witness server, is present.

Rewritten BI Suite

SQL Server 2000 gained a well established po-
sition among major players in the BI market.
However, Microsoft decided to rewrite almost
all products in the SQL Server 2005 BI suite,
including the development tools. The new Bu-
siness Intelligence Development Studio (BIDS)
is just another name for VS. The tool, which
includes templates for all BI projects, now ships

(SSMS), a centralized tool for managing the
database engine, SQL Server Analysis Services
(SSAS), SQL Server Reporting Services (SSRS),
SQL Server Integration Services (SSIS), and mo-
bile edition servers. SSMS also lets you write
queries. SSMS replaces Enterprise Manager,
Analysis Manager, Query Analyzer, and other
tools. Because SSMS is based on VS, you can ea-
sily add versioning support to it by using Team
System Server or Visual SourceSafe.

Besides CLR and XQuery support, developers
also received new T-SQL elements in SQL Ser-
ver 2005. New operators—including PIVOT,
UNPIVOT, and APPLY—can help abbreviate your
code. And the version boasts new ranking func-
tions, including ROW_NUMBER(), which have
topped wish lists for years. Yukon introduces
Common Table Expressions (CTEs) as another
way of using subqueries; with them, you can
introduce subqueries in advance, in the WITH
clause, before the outer or main SELECT state-
ment. In addition, with CTEs, you can expand
hierarchies modeled as the adjacency model.

Asynchronous applications are simpler and
more reliable than ever with SQL Server Service
Broker, a new message queuing system inside
SQL Server 2005. An application can subscribe
to query notifications; with query notifications,
SQL Server informs an application that the ca-
ched data is outdated. And to enable applica-
tions in which readers do not block writer and
to mitigate moving applications from Oracle,
Yukon adds two new transaction-isolation le-
vels: Snapshot and Read Committed Snapshot.
Thus, SQL Server is no longer limited to the pes-
simistic locking approach only; these two levels
implement an optimistic approach, storing old
versions of rows before updates in the tempdb
system database, then driving SELECTs through
these old versions.

Yukon delivers new performance features as
well. You can now physically partition a table
horizontally while still referring to it logically
in queries by using a single table name. This

27

Dejan Sarka

the report requests into database queries. End
users create ad hoc reports by using Report
Builder, a new, lightweight and simple-to-use
report authoring tool. In addition to the report
the end user creates, SSRS automatically gene-
rates click-through reports, letting consumers
follow navigation paths based on foreign keys
that exist within the report model.

As noted earlier, in SQL Server 2005, SQL Server
Integration Services (SSIS) replaces DTS. The
difference is enormous. SSIS is an actual ETL
tool. Besides control flow and tasks, it features
a separate data flow engine. Inside a data flow,
which you create by using the Data Flow task
in the control flow, you can connect to diffe-
rent sources, read the data, store it in memory
in tabular format, work on this data through
multiple transformations, and finally load it to
one or more destinations. The Data Flow task
is actually Data Pump on steroids. SSIS includes
both basic and advanced transformations that

with SQL Server, providing a separate tool from
SSMS for developing BI applications. Version
management of BI projects is simple, using the
same version management as any VS project.
Customers that do not have a valid VS license
no longer have to purchase it just for SSRS pro-
jects, as they had to in SQL Server 2000. In ad-
dition, SQL Server 2005 extends Profiler, letting
you trace SSAS as well as the database engine.

Although as one of the newer BI additions, SSRS
didn’t need major changes, the reporting com-
ponent lacked a simple tool that let advanced
end users author reports. End users can’t use
VS, and they don’t know how to write database
queries. So Microsoft offered a solution. In SSRS
2005, DBAs can create report models, semantic
descriptions of database metadata that serve
as an intermediate layer between report author
and data. Report authors can then create re-
ports by using business entities and attributes,
and SSRS uses the report models to transform

Figure 5: Key and Encryption Hierchy in SQL Server 2005

28

Dejan Sarka

Figure 6: SSIS Control Flow and Data Flow

Besides tasks and precedence constraints, con-
trol flow also includes containers. Two contain-
ers, For Loop and For Each Loop, allow looping
of tasks. You can base precedence constraints
not only on success, failure, or completion of
a task, but you can now include custom logical
expressions to define the flow exactly as you
want it. These features together with package
variables, event handlers, extensive logging,
restartability, external package configurations,
and improved security make SSIS a high perfor-
mance enterprise ETL tool.

In SSAS 2005, the term OLAP is replaced with
Unified Dimensional Model (UDM). UDM isn’t
just a marketing term; metadata—the schema
of OLAP cubes—is enhanced so that it is richer
than relational schema in a data warehouse.
Therefore, you do not need to first create a data
warehouse, and then inherit star schemas in
OLAP cubes; you can start building your dimen-
sional model from either the SSAS or relational
engine side. Thus, SQL Server 2005 delivers true
unified dimensional modeling. Also in the new
version, a single OLAP cube can include multiple
fact tables. Because a cube can now represent
a complete data warehouse, SSAS 2005 in-

you can use to add a lot of intelligence to your
ETL package. The Fuzzy Lookup transformation,
for example, can match rows from different so-
urces based on similarity of character columns,
and the Fuzzy Grouping transformation is han-
dy for de-duplicating rows based on similarity
of strings. The Data Mining transformation lets
you add predictions from a data mining model
to your data flow and later filter the data ba-
sed on those predictions. And Term Extraction
and Term Lookup transformations are useful
together with SSAS data mining for text mining.
The Slowly Changing Dimension transformation
isn’t actually a transformation; it is a wizard that
generates all the transformations you need for
maintaining changes in dimension data over
time. Inside a data flow, a package need not
fail on erroneous rows when executed; instead,
you can define separate error flows and either
correct or log erroneous rows. Figure 6 shows
the relationship between control flow and data
flow.

29

Dejan Sarka

•	 Time Series, a forecasting Auto-Regression
Trees (ART) algorithm

Although not part of the SQL Server suite,
Microsoft Office Excel 2007 now serves as a
first-class OLAP client—and with freely down-
loadable data mining add-ins, as a data mining
client as well. In addition, Excel 2007 with data
mining add-ins can use SSAS data mining algori-
thms to analyze spreadsheet data.

SQL Server 2008: Katmai

The SQL Server story continues in 2008 with
SQL Server 2008, code-named Katmai. While
perhaps not as revolutionary as SQL Server
2005, Katmai nevertheless is an important step
forward in satisfying ever growing data-mana-
gement needs. New system data types support
spatial applications and sparse data and impro-
ve date and time handling. The MERGE state-
ment, change tracking, and change data captu-
re (CDC) simplify data warehouse maintenance.
Policy-based management, resource control,
and performance data collecting enable DBAs
to work more efficiently. SSIS 2008’s new Data
Profiling task lets you check data quality before
you actually start your ETL process. And the en-
tire BI suite—including SSIS, SSAS, and SSRS—
gets a performance boost.

Supreme Database Engine

Having CLR support in the database engine ena-
bled Microsoft to use it to ship additional data
types in SQL Server 2008. Katmai supports spa-
tial data and spatial applications with Geometry
and Geography data types, and maintaining
hierarchies is simplified with the HierarchyId
data type. For large objects, you no longer have
two mutually exclusive options: storing them
in the database or in the file system; you can
now use the new Filestream storage attribute
to store unstructured data, such as documents
and images, on the file system while working
with the attribute as you do with regular large
object database data types. The benefit of using

cludes additional objects called Perspectives.
Perspectives are UDM views that let users see
only the part of the cubes they are interested
in. In the new version, you can pivot data and
drill down using any attribute of a dimension,
not only attributes that are part of a hierarchy.
For example, you aren’t limited to drilling down
only through the path country-region-city-cu-
stomer; you can also drill down from country to
customer account manager, then to size of com-
pany, and so on. Inside the UDM, you can define
translations for data and metadata. Besides sto-
ring calculations centrally in your UDM, you can
also store Key Performance Indicators (KPIs). By
centralizing KPIs and attribute properties, such
as format strings and presentation information,
you can maintain a single version of truth in the
enterprise. No matter where your UDM data
is retrieved from and with which client tool, it
is always presented in a consistent way, thus
unifying the perception to end users. Note that
you can also install multiple instances of SSAS in
SQL Server 2005. And the number of supported
instances on a single box has risen from 16 for
SQL Server to 50 for SQL Server and 50 for SSAS.
Finally, you aren’t limited to a scheduled refresh
of OLAP data if you store it in an UDM; UDM
supports proactive caching.

SSAS 2005’s data mining features underwent
an even bigger overhaul. Data mining in version
2005 isn’t just a teaser; it is a mature product,
integrated with other SQL Server components.
SSAS ships with all the most popular data mi-
ning algorithms:

•	 Association Rules

•	 Decision Trees, which includes Regression
Trees

•	 Naïve Bayes

•	 Neural Networks

•	 Clustering

•	 Sequence Clustering

•	 Linear Regression

•	 Logistic Regression

30

Dejan Sarka

implement the changes in your data wareho-
use. However, what happens if you don’t have
any attribute useful for row matching in the
source and destination tables? This could occur
if the primary key changed in the source table.
In that case, you could use CDC, which captures
all the changes in additional system tables. Be-
cause the capturing feature uses data from the
transaction log asynchronously, it is has much
lower performance impact on the source server
than if you implemented this feature using data
modification language (DML) triggers.

For application developers, Katmai supports
the Entity Framework and Language Integrated
Query (LINQ). Both application and database
developers will appreciate the version’s CLR en-
hancements, especially large user-defined data
types, which aren’t limited to 8K anymore, and
multi-parameter user-defined aggregate func-
tions. Database encryption is transparent for
applications in Katmai, meaning you should be
able to use it without application modifications.

On the DBA side, there are also plenty of rea-
sons to look forward to Katmai. Take a look at
Figure 7, which shows some interesting new
folders in SSMS. The new Policy Management
folder and subfolders are where you implement
the Policy-Based Management (PBM); the Data
Collection folder lets you set up performance
data collection; and the Resource Governor
folder and subfolders let you control resources
used by SQL Server operations.

The PBM is a policy-based management fra-
mework for the SQL Server database engine.
It ensures compliance with policies for system
configuration, enables preventing and monito-
ring changes to the system, and reduces total
cost of ownership by simplifying administration
tasks. Resource Governor is a new technology
that lets you manage workload and resources
by specifying limits on resource consumption
by incoming requests. This feature is useful, for

Filestream data is that you don’t inflate your
database files with large objects, but you can
administer large objects together with other
database objects, including performing backups
and setting up security. In SQL Server 2008, full-
-text indexes are integrated in the database as
well, making them easier to maintain and provi-
ding better performance for full-text searches.

SQL Server 2008 also delivers one of the most
requested features for years: new Date and
Time data types that let you store data and time
separately. Additionally, the new Datetime2
type has a larger date range and a larger default
fractional precision than the old Datetime type
as well as optional user-specified precision. The
new Datetimeoffset type offers another way to
handle date and time, defining a date combined
with a time of a day that has time zone awa-
reness and is based on a 24-hour clock. When
you create a table, you can also define some
columns as sparse columns. Sparse columns are
ordinary columns that have optimized storage
for null values. Sparse columns reduce the need
for separate subtype tables for the not-applica-
ble attribute.

Pure database developers will be happy with
the extended T-SQL language features in SQL
Server 2008. Stored procedures and UDFs can
accept table-valued parameters. The new MER-
GE statement, also known as UPSERT, can do
multiple data modifications at a time. Based on
a source table, you can update matched rows
in the destination table, insert rows that do not
exist in the destination table yet, and delete
rows from the destination table that do not
exist in the source table anymore. This is espe-
cially useful for maintaining a data warehouse.
Two other options target data warehouse sce-
narios as well: Change Tracking (CT) and Change
Data Capture (CDC). With CT, you can track
whether there were changes in source tables,
and then efficiently use MERGE statements to

31

Dejan Sarka

SSIS packages and SSRS reports for analyzing
the data—with a couple of mouse clicks in
SSMS. All these features together comprise the
new Performance Studio.

In addition, SQL Server 2008 lets you optimize
database file space consumption with data and
backup compression. And new filtered indexes

example, if you need to run a huge query during
peak hours and you do not want the query to
consume all the resources, such as memory and
CPU. DBAs will also find Katmai’s automatic per-
formance and other management data collecti-
on features valuable. You can collect this data in
a Management Data Warehouse (MDW), which
you can create—together with the required

Figure 7: New Management Folders in SSMS

32

Dejan Sarka

(i.e., measures uniqueness of a column or set
of columns)

•	 Functional dependency, which reports the
extent to which the values in one column (the
dependent column) depend on the values in
another column or set of columns (the deter-
minant column)

•	 Value inclusion, which computes the over-
lap in the values between two columns or sets
of columns; this profile can determine whe-
ther a column or set of columns is appropriate
to serve as a foreign key between the selected
tables, or if all keys in a subtype are included
in the pertaining supertype

The main focus of improvements in SSAS 2008
is performance. Performance is the key in all
phases of the SSAS database life cycle, starting
with design. OLAP models can be complex.
And best practices and performance tips aren’t
generally well known, so designing the models
correctly isn’t easy. In SSAS 2008, performance
best practices are embedded in the design pro-
cess. When you design a UDM database in BIDS,
you get more than 40 best practices warnings
integrated into real-time designer checks. You
see blue squiggly lines and receive build-time
warnings if your model isn’t in accordance
with performance best practices. In addition,
the Dimension Designer has a new Attribute
Relationship Designer. The Cube Wizard doesn’t
create all possible attribute hierarchies by de-
fault, so you don’t automatically get aggregates
over attributes that you never use for drilling
down, such as customer address and phone.
The Attribute Relationship Designer also gives
you more control over the design of aggregates.
When a UDM is deployed, a DBA can monitor
performance through new Dynamic Manage-
ment Views (DMVs). SSAS also exposes server
resource information as a cube that you can use
to perform resource analysis.

SSAS 2008 also boasts performance impro-
vements for cubes in production. Calculating
expressions on sparse cubes is optimized so

let you index only interesting subsets of rows,
thus making indexes smaller and more effective.

Note that SQL Server Notification Services
(SSNS) doesn’t exist in SQL Server 2008. Appa-
rently Microsoft realized that not many custo-
mers were using the component. However,
users of existing SSNS implementations aren’t
going to be happy with this decision.

Mature BI

The BI suite in SQL Server 2008 continues to
mature, with SSIS, SSAS, and SSRS seeing ad-
vanced features, usability enhancements, and
performance improvements.

Probably the most important new feature in
SSIS 2008 is the Data Profiling task. Before
you transfer source data to your data wareho-
use, you should always perform some quality
checks. You can use the Data Profiling task to
measure the following:

•	 Column length distribution, which reports
all the distinct lengths of string values in the
selected column and the percentage of rows
in the table that each length represents

•	 Column null ratio, which reports the per-
centage of null values in the selected column

•	 Column pattern, which reports a set of
regular expressions that cover the specified
percentage of values in a string column

•	 Column statistics, which reports statistics,
such as minimum, maximum, average, and
standard deviation for numeric columns and
minimum and maximum for datetime columns

•	 Column value distribution, which reports
all the distinct values in the selected column
and the percentage of rows in the table that
each value represents; can also report values
that represent more than a specified percen-
tage of rows in the table

•	 Candidate keys, an option that reports
whether a column or set of columns is a key,
or an approximate key, for the selected table

33

Dejan Sarka

SAN storage and is shared between multiple
Analysis Services instances. Backup speed is
also improved.

Katmai brings a couple of data mining impro-
vements as well. Time Series analysis now
supports the Auto-Regressive Integrated Mo-
ving Average (ARIMA) algorithm in addition to
the ART algorithm. ART is better in short-term
forecasting, and ARIMA performs better for
long-term forecasts. You can use a mix of ART
and ARIMA forecasts in a single mining model.
Microsoft will also upgrade Office 2007 Data
Mining Add-Ins will to support SSAS 2008l. In Fi-
gure 8, you can see Excel 2007 as a data mining
client tool for SSAS 2008.

much that you can feel the magnitude of im-
provement compared to SSAS 2005—and many
OLAP cubes are sparsely populated. If you write
back to cubes—for example, for a planning and
budgeting application—in previous versions,
write-back was done in the relational data
warehouse; reading relational data was magni-
tudes slower than reading OLAP data. In SQL
Server 2008, multidimensional OLAP storage
(MOLAP), a variant where you store everything
(including metadata, aggregates, and data) in
an SSAS database, isn’t read-only anymore. You
use MOLAP write-back, thus gaining a lot in
performance. SSAS 2008 also supports scalable
read-only shared databases; a database can use

Figure 8: Excel 2007 as SSAS 2008 Data Mining
Client

In SSRS 2008, I want to point out two important
features in particular. The first one is the Tablix
data region. A Tablix data region combines fea-
tures of both a table and a matrix, letting you

organize data both by column and row groups.
Some features enabled with the Tablix data
region include the possibility of having stepped
columns with crosstab reports—for example,
customer country and region can share the
same column; using side-by-side crosstab secti-
ons—for example, product category and color;

34

Dejan Sarka

stored in variable-length format. SQL Server
2008 added row compression and page com-
pression. SQL 2008 R2 brings Unicode compres-
sion. It works on nchar(n) and nvarchar(n) data
types. There is no special command to turn on
the Unicode compression; it is turned on auto-
matically with row or page compression. The
actual savings depends on language; can be up
to 50% in English or German and only 15% in Ja-
panese. Nevertheless, it makes sense in nearly
any language, as the performance penalty for
using it is very low.

Data Tier Application (DAC) is a single unit of
deployment that contains all of the database’s
schema, dependent objects, and deployment
requirements in a single zipped XML file. You
author SQL Server data-tier application project
in Visual Studio 2010, or extract it from an exi-
sting database with the Data-Tier Application
Wizard in SSMS. Deployment of data applica-
tions is simple, and the collaboration between
data-tier developers and DBAs is significantly
improved with DAC. However, not all objects
are supported in DAC in this version. Also, be-
cause of security, SQL logins’ passwords are not
saved.

Finally, there is SQL Server Utility – and utility
to centrally monitor and manage database ap-
plications, SQL Server instances, database files,
and volumes. It has a management interface
– Utility Control Point in SSMS. It collects con-
figuration and performance information every
15 minutes. In SSMS, you can visualize the in-
formation collected through SQL Server Utility
dashboard and viewpoints. They provide health
summary of SQL Server resources through po-
licy evaluation and historical analysis. The data
collected is stored in Utility Management Data
Warehouse (UMDW) , named sysutility_mdw.

BI: Enhancements

From existing BI suite, SQL Server in version
2008 R2 brings additional useful features only
in Reporting Services. Associations between

and having independent group aggregates with
crosstab reports. The other exciting SSRS 2008
feature is the new authoring tool. Report De-
signer is now a standalone application with an
Office 2007 look and feel. It is easier to use than
VS, yet it doesn’t lack any functionality.

SQL Server 2008 R2: Kilimanjaro

The 2008 R2 version, released in 2010, is not
treated as a complete new version; it is rather
an enhancement of SQL Server 2008. Most of
new features are focused on BI part. Microsoft
introduced couple of completely new products
in the BI suite. Some minor enhancements can
be found in the database engine as well. Besides
new features, Kilimanjaro has also refurbished
editions. The 2008 R2 editions include:

•	 Premium editions

ДД Datacenter: 256 logical CPUs, unlimited
virtualization,...

ДД Parallel Data Warehouse: data wareho-
use appliance, MPP technology

•	 Core editions

ДД Enterprise: OS max CPUs, compression,
partitioning …

ДД Standard: up to 4 CPUs, backup com-
pression (new) …

•	 Specialized editions

ДД Developer: all Datacenter features, li-
cense for development only

ДД Web: 4 CPUs, unlimited RAM

ДД Workgroup: 2 CPUs, 4GB RAM

ДД Express: 1 CPU, 1GB RAM, 10GB db size

ДД Compact: mobile systems

ДД Evaluation: all Enterprise features, eva-
luation license only

Small Delights in the Database Engine

Compression in pre-SQL 2005 edition was limi-
ted to variable-length data types. SQL Server
2005 added vardecimal type, i.e. decimal type

35

Dejan Sarka

ДД Line: Connected sequence of points

ДД Polygon: Two-dimensional shape having
same start and end point

•	 Bing map tiles

ДД Provides road, aerial, or hybrid view as
background for map layers

ДД Requires report server configuration to
support Bing Maps Web Services

•	 ESRI shape file

ДД Complies with Environmental Systems
Research Institute spatial data format

ДД Contains data in a pair of files defining
geometric or geographic shape and attri-
butes for those shapes.

Figure 9 shows in a quite condensed way some
of the options you can use to represent spatial
data with maps in SSRS 2008 R2.

datasets from different sources are not limited
on report models, i.e. on data source views,
anymore. Regular reports still do not use data
source views, and datasets are still limited on
a single rowset; however, SSRS has new built-in
functions you can use in expressions to denote
associations between datasets.

From version 2005 we can use shared data so-
urces. However, up to 2008 R2, this is the only
thing besides images we can share. In 2008 R2,
you can share also datasets and report parts,
like Tablix or Chart controls. This way, you can
speed up and simplify report development be
reusing these shared report parts.

From visualization perspective, Maps are the
most important enhancement. Data sources for
maps include:

•	 SQL Server spatial data type

ДД Point: Exact location defined as (X,Y)
coordinate

Figure 9: Options for Spatial Data in Map Wizard Small delights in visualization include sparkli-
nes, data bars and indicators. A new rendering

36

Dejan Sarka

There are multiple approaches to master data
management:

•	 No central master data management

ДД Not really MDM

•	 Central metadata storage

ДД Probably in an unstructured form – in
documents, worksheets, or even on paper
only

•	 Central metadata storage with identity
mapping

ДД Useful during upgrading, testing and
initial usage of a new ERP system

•	 Central metadata storage and central data
that is continuously merged

ДД DW and CRM apps can be an authorita-
tive source of master data

•	 Central MDM, single copy

ДД Hardly possible to make an union of all
needs

•	 Central MDM, multiple copies

ДД Realistic, although involves continuous
merge.

Master Data Services is a centralized master
data management solution. It is an authoritati-
ve source for master data. Other applications,
including BI applications, can subscribe to this
data through subscription views or program-
mable APIs. MDS is a central storage and also
provides master data management services. It
brings limited data integration features through
four well-known, publically available algorithms
for evaluating similarities of strings.

I want to expose in this place the SSIS Fuzzy Lo-
okup transformation. It is available in SSIS from
version 2005. It enables merging data based on
string similarities using proprietary Microsoft
algorithm. The important part here is the qua-
lity of algorithm. Fuzzy Lookup is magnitudes
better than any public algorithm, including all
algorithms provided by Master Data Services.
The same algorithm uses Fuzzy Grouping trans-

extension supports ATOM data feeds. Report
Builder 2.0 is upgraded to 3.0, which is even
simpler to use. Still, the target for this authoring
tool is an advanced end user. However, beca-
use of usage of shared report parts and new
wizards, authoring reports is faster and simpler
than in version 2.0.

BI: New Products

In an average BI project, we spend most of the
time in data cleansing. This is especially im-
portant for dimensions, which give context to
transactional data. Master data is generally a
quite broad term; for BI purposes, we can make
an approximation and say that the dimensions
data is our master data. For extract – transform
– load (ETL) processes, SSIS is the tool. Howe-
ver, I want to mention also Master Data Services
(MDS) in this place. Although this is not an ETL
tool, MDS can help with data quality, and might
lower the need for data cleansing and merging.

MDS is a product that coordinates process of
managing master data, involving policies, pro-
cesses, procedures and people. Goals of master
data management in general include:

•	 Unifying (harmonizing) master data betwe-
en different systems

•	 Maintaining multiple versions of master
data

•	 Integrating master data for analytical and
CRM systems

•	 Maintaining history for analytical systems

•	 Capturing information about hierarchies in
master data

•	 Supporting compliance with government
prescriptions (e.g., Sarbanes-Oxley) through
auditing and versioning

•	 Having a clear CRUD process through pre-
scribed workflow

•	 Maximizing ROI through re-usage of ma-
ster data.

37

Dejan Sarka

is provided as an appliance running SQL Server
on Windows Server, with standard hardware
components from a number of hardware ven-
dors – HP, IBM, Dell, Bull, and EMC. This provi-
des a balanced solution consisting of software
and hardware working together. PDW supports
data warehouses that store 100’s of terabytes,
and beyond into the petabyte range. PDW uses
multiple compute nodes with database servers
and storage nodes, control and management
nodes, backup nodes and landing zone nodes
for loads from ETL processes.

PDW is s hub and spoke solution. PDW com-
prises a centralized EDW and a set of loosely
coupled data marts. With PDW, you can create
a diverse range of types of spoke, from SQL Ser-
ver Parallel Data Warehouse MPP appliances
for user groups with extreme scalability requi-
rements, FTDW implementations, SQL Server
2008 Enterprise data warehouses, and even
SQL Server 2008 Analysis Services OLAP data-
bases. However, everything has its own price.
PDW SQL language is somehow limited. Figure
10 shows the PDW architecture.

formation, which is very useful for de-duplica-
tion of data.

The next product I have to mention is StreamIn-
sight. StreamInsight is a set of .NET classes that
allow real-time analysis of in-memory data stre-
ams. For analysis, it uses LINQ language, which
is quite similar to SQL. With StreamInsight, it is
possible to identify patterns and relationships
from seemingly unrelated events on-line, in
real time. StreamInsight is appropriate for mo-
nitoring and processing streams of events that
pass by synchronously, for example from some
machines.

Fast Track Data Warehouse (FTDW) is a pre-built
and tuned hardware and SQL Server. Everything
is optimized for star schemas and sequential IO.
As the RDBMS is SQL Server, this is a logical next
step if SQL Server Enterprise is not enough for
your Enterprise Data Warehouse (EDW).

Parallel Data Warehouse (PDW) is a data ware-
house appliance that offers massive scalability.
PDW is built on the Massive Parallel Processing
(MPP) technology acquired with Datallegro, and

Figure 10: PDW Architecture

PowerPivot is a column-oriented in-memory
database. It can live on client side as an Excel

add-in, or in a SharePoint Enterprise installation
through Excel Services. It gives SSAS strength to
Excel, and can be used as SSAS on advanced end
user (Excel) or departmental level (SPS). Howe-

38

Kolofon

ver, metadata is still far from the real SSAS. In
addition, PowerPivot introduces new expressi-
on language, Data Analysis Expressions (DAX).

Work in Progress

From Version 7.0 to Version 2008 R2, SQL Server
has provided and continues to provide a relia-
ble, scalable, and secure database platform that
satisfies growing business needs. However, it is
much more than a relational database manage-
ment system. With all its database engine and
BI components, SQL Server delivers everything
you need to store, maintain, integrate, and
analyze your data. It is a mature, market-lea-
ding product. However, the work is never fini-
shed, and there is still room for improvement.
In future releases, the first one expected in
2011, I would like to see support for temporal
applications built into the database engine. And
the OVER clause of the T-SQL SELECT statement
would be even more useful if it fully implemen-
ted all ANSI-standard subclauses. From the
tools perspective, I really miss a good database
modeling tool and would like to see one inclu-
ded in the SQL Server suite. In the BI suite, we
need more tools for checking data quality and
getting an overview of the data. I would like to
see more statistical algorithms implemented in
SSAS, maybe through language enhancements
or through system stored procedures. Based on
the enhancements that Microsoft has delivered
in the last four SQL Server versions, I am confi-
dent that future versions will give us even more
advanced, efficient, and easy-to-use ways to
meet our business needs for storing, managing,
and analyzing data.

Izdaja

Kompas Xnet�
Stegne 7�
1000 Ljubljana

Telefon:� 01 5136 990
Fax:� 01 5136 999
Email:� info@kompas-xnet.si
Web:� http://www.kompas-xnet.si

Direktorica

Branka Slinkar

Urednik in oblikovalec

Gašper Kamenšek

Člani uredništva

Dejan Sarka, Herbert Albert, Dino
Esposito

Kolofon

Osvojili smo prvo mesto! (januar 2011)
Microsoft je potrdil naš uspeh! (november 2010)
Prejeli smo posebno priznanje (oktober 2010)

Uvrstili smo se v finale najboljših zaposlovalcev Zlata Nit 2010!
Le še nekaj dni lahko glasujete za nas in nam pomagate do zmage.

